

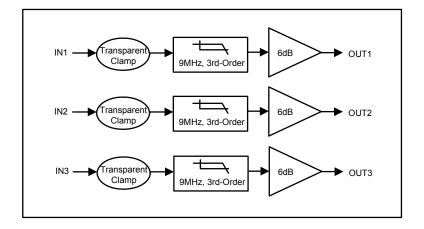
SGM9115 Triple, 9MHz, 3rd-Order SDTV Video Filter Driver

PRODUCT DESCRIPTION

SGM9115 is a video buffer which integrates triple 6dB gain rail-to-rail output drivers and triple 3rd-order output reconstruction filters with a -3dB bandwidth of 9MHz and 44V/µs slew rate. Operating from single power supply ranging from 3.3V to 5.5V, the SGM9115 provides improved image quality compared with passive LC filters and discrete drivers solution.

SGM9115 can be DC-coupled or AC-coupled with input video signal, such as the output stage of DAC to eliminate out-of-band noise. Internal diode clamps and bias circuitry may be used if AC-coupled inputs are required. SGM9115 also integrates an internal level shift circuit which avoids sync-pulse being clipped and allows DC-coupled output. The drivers in SGM9115 can drive DC- or AC-coupled single (150 Ω) or dual (75 Ω) loads.

The SGM9115 is available in Green SOIC-8 package and ESD (HBM) reaches 8KV.

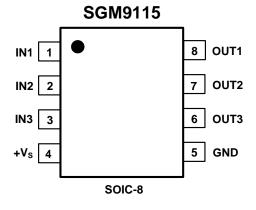

FEATURES

- Triple 3rd-Order 9MHz (SD) Filters
- Transparent Input Clamping
- 6dB Output Driver Gain and Drive Dual Video Loads
- Rail-to-Rail Output
- Input Voltage Range Includes Ground
- AC- or DC-Coupled Inputs
- AC- or DC-Coupled Outputs
- Operates from 3.3V to 5.5V Single Power Supply
- Available in Green SOIC-8 Package

APPLICATIONS

Video Amplifiers
Cable and Satellite Set-Top Boxes
Communication Devices
Video on Demand
Portable and Handheld Products
Personal Video Recorders
DVD Players
SDTVs

BLOCK DIAGRAM



PACKAGE/ORDERING INFORMATION

ORDER NUMBER	PACKAGE DESCRIPTION	TEMPERATURE RANGE	PACKAGE OPTION	MARKING INFORMATION
SGM9115XS/TR	SOIC-8	-40°C to +125°C	Tape and Reel, 2500	SGM9115XS

PIN CONFIGURATION (TOP VIEW)

PIN DESCRIPTION

PIN	NAME	FUNCTION
1	IN1	Video Input. Channel 1.
2	IN2	Video Input. Channel 2.
3	IN3	Video Input. Channel 3.
4	+V _S	Power Supply.
5	GND	Ground.
6 OUT3 Filtered Output. Chann		Filtered Output. Channel 3.
7	OUT2	Filtered Output. Channel 2.
8 OUT1 Filtered Output		Filtered Output. Channel 1.

ABSOLUTE MAXIMUM RATINGS

$\label{eq:Supply Voltage, GND to +Vs.} Supply Voltage, GND to +Vs.} Input VoltageGND - 0.3 V to (+Vs) + 0.3 V Storage Temperature Range65°C to +150°C65°C to +150°C$
Junction Temperature
Operating Temperature Range40°C to +125°C
Power Dissipation, P _D @ T _A = 25°C
SOIC-8
SOIC-8, θ _{JA}
Lead Temperature Range (Soldering 10 sec)
260°C
ESD Susceptibility HBM

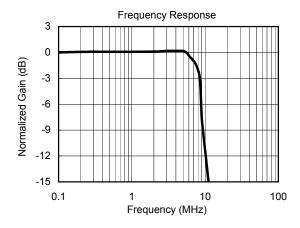
NOTE:

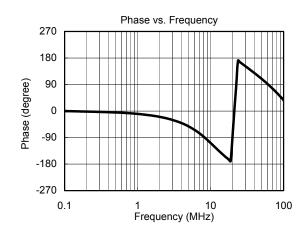
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

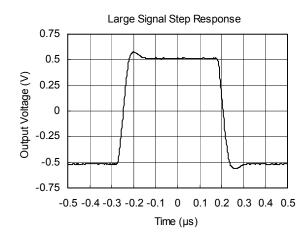
CAUTION

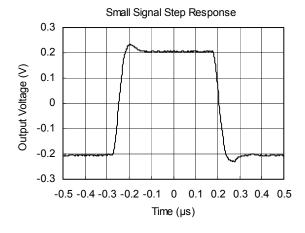
This integrated circuit can be damaged by ESD if you don't pay attention to ESD protection. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

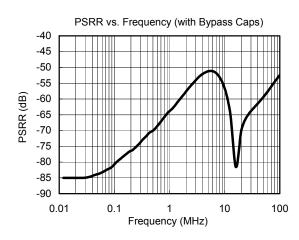
SGMICRO reserves the right to make any change in circuit design, specification or other related things if necessary without notice at any time. Please contact SGMICRO sales office to get the latest datasheet.

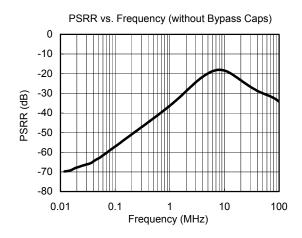

SGM9115

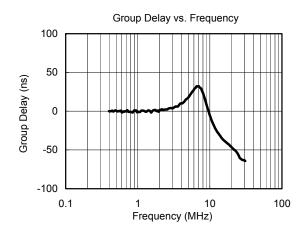

ELECTRICAL CHARACTERISTICS: $V_S = +5.0V$ (At R_L = 150 Ω connected to GND, V_{IN} = 1 V_{PP} and C_{IN} = 0.1 μ F, all outputs AC-coupled with 220 μ F, unless otherwise noted.)

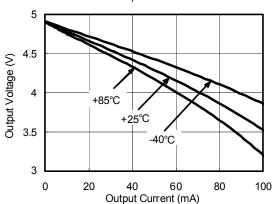

		SGM9115						
PARAMETER	CONDITIONS	TYP	MIN/MAX OVER TEMPERATURE					
PARAMETER	CONDITIONS	+25℃	+25℃	-40℃ to +85℃	-40℃ to +125℃	UNITS	MIN/ MAX	
INPUT CHARACTERISTICS								
Output Level Shift Voltage (V _{OLS})	V _{IN} = 0V, No load	380	570	670	700	mV	MAX	
Input Voltage Clamp (V _{CLAMP})	I _{IN} = -1mA	-105	-220	-300	-350	mV	MIN	
Clamp Charge Current	$V_{IN} = V_{CLAMP} - 100 \text{mV}$	-5	-5.9	-8.0	-9.0	mA	MIN	
Voltage Gain (A _V)	$R_L = 150\Omega$	2.0	1.95	1.91	1.90	V/V	MIN	
			2.04	2.08	2.09	V/V	MAX	
OUTPUT CHARACTERISTICS							1	
Output Voltage High Swing	V_{IN} = 3V, R_L = 150 Ω to GND	4.4	4.3	4.25	4.2	V	MIN	
POWER SUPPLY								
Operating Voltage Range			3.3			V	MIN	
			5.5			V	MAX	
Power Supply Rejection Ratio (PSRR)	V _S = 3.3V to 5.5V	60	58	57	56	dB	MIN	
Quiescent Current (IQ)	V _{IN} = 500mV	21	26	30	33	mA	MAX	
DYNAMIC PERFORMANCE							1	
±0.1dB Bandwidth	$R_L = 150\Omega$	5.5				MHz	TYP	
-3dB Bandwidth	$R_L = 150\Omega$	9.0				MHz	TYP	
Filter Response								
Normalized Gain: f _{IN} = 27MHz		-46				dB	TYP	
Slew Rate	20% to 80%, V _{IN} = 1V Step	44				V/µs	TYP	
Differential Gain (DG)	NTSC & PAL DC-coupled	0.57				%	TYP	
	NTSC & PAL AC-coupled	0.86				%	TYP	
Differential Phase (DP)	NTSC & PAL DC-coupled	0.85				۰	TYP	
	NTSC & PAL AC-coupled	1.41				0	TYP	
Group Delay Variation (D/DT)	Difference between 400kHz and 6.5MHz	31				ns	TYP	
Crosstalk (channel-to-channel)	at 1MHz	-64				dB	TYP	
Fall Time	2.0V _{STEP} , 80% to 20%	36				ns	TYP	
Rise Time	2.0V _{STEP} , 80% to 20%	38				ns	TYP	


TYPICAL PERFORMANCE CHARACTERISTICS

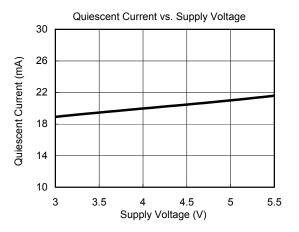

At V_S = +5.0V, T_A = +25°C, R_L = 150 Ω , all outputs AC-coupled with 220 μ F, unless otherwise noted.

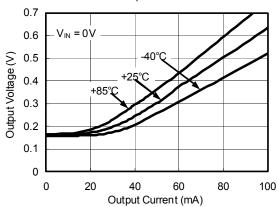


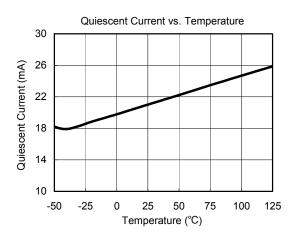




TYPICAL PERFORMANCE CHARACTERISTICS


At V_S = +5.0V, T_A = +25°C, R_L = 150 Ω , all outputs AC-coupled with 220 μ F, unless otherwise noted.


Output Voltage Swing to the Positive Rail vs.
Output Current



Gain Error vs. Temperature 0.9 8.0 0.7 Gain Error (%) 0.6 0.5 0.4 0.3 0.2 0.1 -50 -25 25 50 75 100 125 Temperature (°C)

Output Voltage Swing to the Negative Rail vs.
Output Current

APPLICATION INFORMATION

Functional Description

SGM9115 operates from a single 3.3V to 5V supply. In application, SGM9115 is a fully integrated solution for filtering and buffering SDTV signals in front of video decoder or behind video encoder. For example, SGM9115 can replace three passive LC filters and three amplifier drivers at CVBS and S-video output side in set-top box and DVD player. This solution can help reduce PCB size and production cost, and it also improves video signal performance comparing with traditional design using discrete components. SGM9115 features a DC-coupled input buffer, a 3-pole low-pass filter to eliminate out-of-band noise of video encoder, and a gain of 6dB in the output amplifier to drive 75Ω load. The AC- or DC-coupled input buffer eliminates sync crush, droop, and field tilt. The output of SGM9115 also can be DC-coupled or AC-coupled.

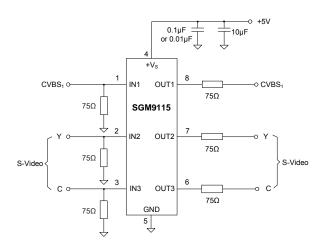
Input Considerations

Besides AC coupling, the SGM9115 inputs also can be DC-coupled. In DC coupling application, no input coupling capacitors are needed because the amplitude of input video signal from DAC includes ground and extends up to 1.4V, and SGM9115 can be directly connected to the output of a single-supply, current-output DAC without any external bias network. In applications where DAC's output level exceeds the range from 0V to 1.4V, or SGM9115 is driven by an unknown external source or a SCART switch which has its own clamping circuit, AC coupling is needed.

Output Considerations

The SGM9115 outputs can be DC-coupled or AC-coupled. When input is 0V, the SGM9115 output voltage is 260mV typically. In DC coupling design, one 75Ω resistor is used to connect SGM9115's output pin with external load directly, and this back-termination resistor is used to match the impedance of the transmission line between SGM9115 and external load to cancel the signal reflection. The SGM9115 outputs can sink and source current allowing the device to be AC-coupled with external load. In AC coupling, at least 220µF capacitor will be used in order to eliminate field tilt.

Power-Supply Bypassing and Layout


Correct power supply bypassing is very important for optimizing video performance in design. One $0.1\mu F$ and one $10\mu F$ capacitors are always used to bypass $+V_S$ pin of SGM9115. Place these two capacitors as close to the SGM9115 supply pin as possible. A large ground plane is also needed to ensure optimum performance. The input and output termination resistors should be placed as close to the related pins of SGM9115 as possible to avoid performance degradation. The PCB traces at the output side should have 75Ω characteristic impedance in order to match the 75Ω characteristic impedance of the cable connecting external load. In design, keep the board trace at the inputs and outputs of the SGM9115 as short as possible to minimize the parasitic stray capacitance and noise pickup.

APPLICATION INFORMATION

Typical Application Diagram

The following schematic in Figure 3 is normally used for AC-coupled output and DC-coupled input with DAC which has an output voltage range from 0V to 1.4V. AC-coupled output offers slightly lower power dissipation and high ESD protection ability.

The schematics in Figure 1 and Figure 2 are also popular in design. Figure 4 is a kind of special application in STB.

+Vs CVBS₁ O IN1 - CVBS₁ 750 220µF 75Ω SGM9115 0.1µF IN2 OUT2 220µF 75Ω S-Video S-Video 0.1µF IN3 OUT3 75Ω 220µF GND 750

Figure 1. DC Coupling Application Schematic

Figure 2. AC Coupling Application Schematic

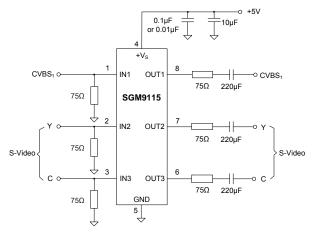
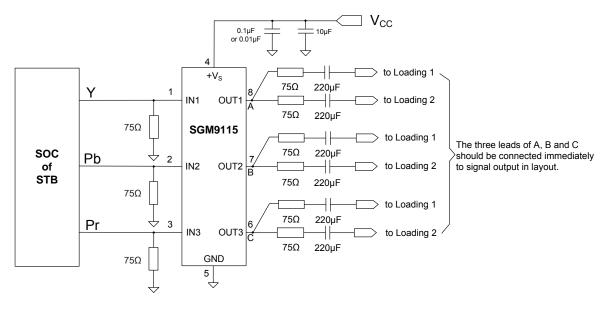
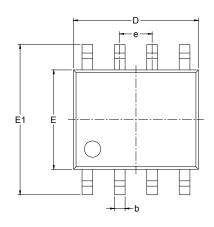
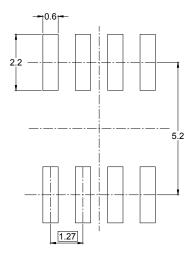


Figure 3. Input DC Coupling and Output AC Coupling Application Schematic

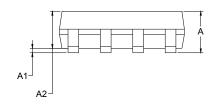
APPLICATION INFORMATION

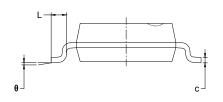



Figure 4. Input DC Coupling and Output AC Coupling Application Schematic in STB

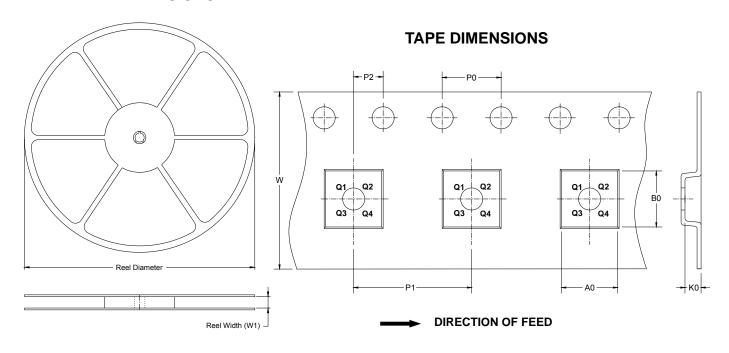

NOTE:

1. Power supply V_{CC} must be sequenced on first before input video signals.


PACKAGE OUTLINE DIMENSIONS


SOIC-8

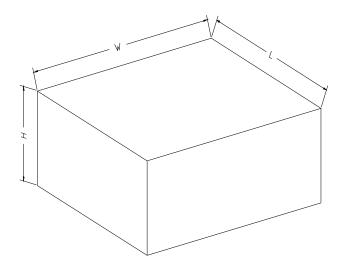
RECOMMENDED LAND PATTERN (Unit: mm)



Symbol		nsions meters	Dimensions In Inches		
	MIN	MAX	MIN	MAX	
А	1.350	1.750	0.053	0.069	
A1	0.100	0.250	0.004	0.010	
A2	1.350	1.550	0.053	0.061	
b	0.330	0.510	0.013	0.020	
С	0.170	0.250	0.006	0.010	
D	4.700	5.100	0.185	0.200	
E	3.800	4.000	0.150	0.157	
E1	5.800	6.200	0.228	0.244	
е	1.27 BSC		0.050	BSC	
L	0.400	1.270	0.016	0.050	
θ	0°	8°	0°	8°	

TAPE AND REEL INFORMATION

REEL DIMENSIONS



NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF TAPE AND REEL

Package Type	Reel Diameter	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	P1 (mm)	P2 (mm)	W (mm)	Pin1 Quadrant
SOIC-8	13"	12.4	6.4	5.4	2.1	4.0	8.0	2.0	12.0	Q1

CARTON BOX DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF CARTON BOX

Reel Type Length (mm)		Width (mm)	Height (mm)	Pizza/Carton	
13"	386	280	370	5	